
Modeling of a density oscillator

T. Kano* and S. Kinoshita
Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan

�Received 16 October 2008; revised manuscript received 19 December 2008; published 27 October 2009�

A density oscillator is a well-known system, which exhibits relaxation oscillation. It alternately exhibits up
and down flows through a pipe that connects two containers filled with fluids that have different densities.
Although the up-flow, down-flow, and flow-reversal processes have been studied separately, the entire oscil-
latory dynamics has not been modeled quantitatively. In this study, we derive a model of a density oscillator by
considering all the above mentioned processes. The model thus obtained describes the oscillatory behavior in
a unified manner, and its viscosity and pipe-length dependence is well described. Moreover, for the demon-
stration of this model, we have extended it to describe the dynamical behaviors observed in coupled density
oscillators. Thus, this model provides a general expression for density oscillators.
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I. INTRODUCTION

Several systems that exhibit spontaneous regular rhythms
exist in nature. Neural spiking, circadian rhythms, gene ex-
pression, the Belousov-Zhabotinsky reaction, and Josephson
junction arrays are well-known examples of such systems
�1–6�. These systems are called self-oscillatory systems
�7,8�, and they have been extensively studied in various sci-
entific and engineering fields. A self-oscillatory system gen-
erally draws a limit cycle in phase space and exhibits a wide
variety of behaviors such as bifurcation of oscillatory modes
and entrainment between oscillators, the latter of which
causes various types of synchronization �8,9�. In particular,
when a system is characterized by more than two different
time scales, the oscillation is called a relaxation oscillation,
which is known to be highly nonlinear and dissipative �7,8�.

A density oscillator is a typical system that exhibits relax-
ation oscillation �10–21�. Because of its simple and control-
lable aspect of experimental setup, it has been known as an
excellent system to investigate the dynamics of relaxation
oscillators. It consists of an inner container with a thin pipe
or a small orifice at the bottom, which is held within an outer
container �Fig. 1�. The inner container is filled with a heavy
fluid, while the outer one is filled with a light fluid. When the
surfaces of both fluids are initially set at nearly the same
height, the heavy fluid begins to flow downward through the
pipe owing to the gradient of hydrostatic pressure. At a criti-
cal height, the flow loses stability and reverses; this causes
the light fluid to flow upward through the pipe. At another
critical height, the flow again loses stability and reverses; the
heavy fluid begins to flow downward again. In this manner,
the oscillation continues for more than several tens of cycles.

A quantitative study of a density oscillator was performed
by Martin in 1970 �10�. He performed detailed experiments
and also analyzed each up and down flow within the pipe
according to Poiseuille’s law �23�. He found that the experi-
mental result of each up and down flow was generally in
good agreement with his analytical result. However, the
overall behavior of the oscillation was not explained by

his theory because the flow-reversal processes between the
up and down flows were not quantitatively described.
Yoshikawa et al. proposed a phenomenological model that
described the entire oscillatory behavior in a unified manner
�11–13�. They combined the equations for the up and down
flows derived by Martin �10� and derived a simple equation
that is known as one of the most common phenomenological
descriptions of oscillatory behaviors. Indeed, a wide variety
of behaviors such as synchronization of oscillators, which
occurs when several inner containers are held within an outer
container �11–13,15–18�, was well described by this model.
However, it had a problem that the actual flow-reversal pro-
cesses were not truly taken into account, and as a conse-
quence, the parameters appearing in the model were given
solely phenomenologically. Thus, the model could not prop-
erly describe how the experimental conditions affected the
actual behavior of oscillations.

The mechanism of the flow-reversal process has been de-
bated extensively. Martin considered that the flow reversal
occurred owing to Rayleigh-Taylor instability �10�, in which
the perturbation at a static interface between two fluids in-
creased when a heavy fluid was located above a light fluid
�24�. However, in reality, the flow-reversal process cannot be
explained in terms of Rayleigh-Taylor instability because the
spatiotemporal dynamics during the flow reversal is gener-
ally complex. Steinbock et al., on the other hand, analyzed
the stability of the down flow within a pipe under several
assumptions and derived the critical height for the instability
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FIG. 1. Scheme of density oscillator. The down flow of the
heavy fluid and the up flow of the light fluid through a pipe occur
repetitively.

PHYSICAL REVIEW E 80, 046217 �2009�

1539-3755/2009/80�4�/046217�12� ©2009 The American Physical Society046217-1

http://dx.doi.org/10.1103/PhysRevE.80.046217


of the flow �19�. Although their analytical results were gen-
erally in good agreement with their experimental results, the
dynamics of the flow-reversal process was not described be-
cause a steady-state approximation was employed.

Recently, we have performed detailed experiments and
have found that flow reversal proceeds in the following man-
ner �21�. The flow reversal from the down to up flow, for
instance, initiates from a small intrusion of light fluid at the
lower end of a pipe; the intrusion grows slowly at first and
then begins to increase rapidly. Finally, the tip of the intru-
sion reaches the upper end of the pipe and then the flow
reversal is completed. Moreover, we have found that these
processes are extremely sensitive to the viscosities of the
fluids. Considering these experimental observations, we have
proposed a model in which three essential forces acting on a
unit volume element at the tip of the intrusion are considered
and have found that the experimental result is well repro-
duced by this model. Later, we have further simplified the
model so that the equations are expressed in a nondimension-
alized form �22�.

However, in our previous studies �21,22�, the dynamics at
the moment when the flow switches is not completely mod-
eled and thus, the processes of the up and down flows have
not been truly connected. For an exact description of the
density oscillation, it is clearly needed to consider both up-
and down-flow processes and the flow reversals between
them and to properly describe how these processes are con-
nected and how they are affected by the experimental condi-
tions. In the present paper, we will present a unified model of
a density oscillator that describes all of these processes in-
cluding their viscosity and pipe-length dependence. More-
over, we will extend the model to describe the dynamical
behavior of coupled density oscillators, the validity of which
will be confirmed through simulations.

II. THEORETICAL MODEL FOR DENSITY OSCILLATOR

We first consider the down-flow process. We assume that
the densities of the heavy and light fluids, which we denote
�H and �L, respectively, and the viscosities of the heavy and
light fluids, which we denote �H and �L, respectively, do not
vary during the oscillation cycles and consider the case
where the pipe length d is sufficiently larger than the pipe
radius a. Moreover, we consider the case of viscous damping
regime defined as ��1/2�1, where �= �ga6� / �16S�L

2d��1/2

and �=3S	� / �2a2��L� with 	�=�H−�L and S as the surface
area of the inner container �10�. A cylindrical coordinate sys-
tem is employed and r and z are defined as the radial and
axial coordinates, respectively. The origin of the z axis is
chosen at the lower end of the pipe.

We first assume that the flow is not affected by an intru-
sion of the light fluid, which will be considered later. The
temporal evolution of the height of the fluid surface x is
derived in the same manner as was derived by Martin �10�.
Although he considered the limit R→0 where R is the ratio
of the surface area of the inner container to that of the outer
container, here, we extend his theory to more general cases
where this assumption is not necessary. When we assume

that the fluid is incompressible and the flow within the pipe
is parallel to the z axis, the z component of the Navier-Stokes
equation is given as

�H
�u

�t
= −

�P�z�
�z

− �Hg +
�H

r

�

�r
�r

�u

�r
� , �1�

where u is the z component of the velocity of the flow and
P�z� is the pressure. By integrating Eq. �1� over the space
within the pipe, we obtain

�H
� ū

�t
=

P�0� − P�d�
d

− �Hg + �2�H

a

�u

�r
�

r=a

, �2�

where ū��2 /a2�	0
au�r , t�rdr is the average velocity within

the pipe. P�0�− P�d� is given as

P�0� − P�d� = �Lgh − �Hg�x − d� − 3
4�Hū
ū
 , �3�

where h is the height of the light fluid surface. The first and
second terms in the right-hand side of Eq. �3� denote the
difference in hydrostatic pressure, while the third term de-
notes the loss of pressure at the passage of a pipe, called
“head loss.” On the other hand, �u /�r 
r=a is derived under
the assumption of a Hagen-Poiseuille flow as described in
�23� as

� �u

�r
�

r=a

= −
4ū

a
. �4�

From the law of mass conservation, x and h are related as
follows:

h − hde = − R�x − xde� , �5�

where xde and hde are the heights at hydrostatic equilibria
when a pipe is filled with the heavy fluid, and hence, they
should satisfy

�Hxde = �Lhde. �6�

Moreover, from the condition of continuity, the following
relation should hold:

ẋ =
a2�

S
ū . �7�

By substituting Eqs. �3�–�7� into Eq. �2� and considering ẋ

0, we obtain

S

a2�
ẍ −

3S2

4da4�2 ẋ2 +
8�HS

a4��H
ẋ +

g

d
�1 +

�L

�H
R��x − xde� = 0.

�8�

Note that Eq. �8� is consistent with Eq. �17� in �10� in the
limit R→0. Then, since the inertia and nonlinear terms are
neglected when ��1/2�1 is satisfied �see details in �10��, the
temporal evolution of x is derived from Eq. �8� as

ẋ = −
��H + �LR�ga4�

8�HSd
�x − xde� . �9�

Thus, the temporal evolution of x exhibits an exponential
response if the flow is not affected by an intrusion of the
light fluid.
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However, we have experimentally found in actual systems
that the light fluid intrudes into a pipe before flow reversal,
as shown in Fig. 2. Although the flow within the pipe is not
affected by the intrusion when the intrusion length is short,
the flow becomes gradually obstructed by the intrusion as it
grows, which in turn causes the acceleration of the intrusion.
As a consequence, the oscillatory curve of the fluid surface
deviates from an exponential function �see Fig. 4�. When we
consider this effect, Eq. �9� will be modified as

ẋ = − �1 − q����
��H + �LR�ga4�

8�HSd
�x − xde� , �10�

where q��� is a function describing the obstruction of the
flow, which causes the deviation from an exponential re-
sponse. Although the functional form of q��� is not derived
explicitly, here, we represent it phenomenologically as q���
= �� /d�n with n being a positive constant based on the obser-
vation described above.

The temporal evolution of � is derived in the similar man-
ner as that in our previous study �21�. Namely, the force
acting vertically on a unit volume element located at the tip
of the intrusion is divided into three forces. The first force is
a viscous drag force acting downward on the interface be-
tween the two fluids; it is generated due to the velocity dif-
ference between the down flow and the growth of the intru-
sion. We denote this force as F1, and it is expressed using
Eqs. �7� and �10� as

F1 =
�H + �L

2
�b1ū − b2�̇�

= −
�H + �L

2
�b1�1 − q����

��H + �LR�ga2

8d�H
�x − xde� + b2�̇� ,

�11�

where b1 and b2 are positive constants. It should be noted
that the intrusion is resisted by the viscous drag at the inter-
face between the two fluids, as well as by that at the pipe
wall. Since we consider the latter effect in the second term
on the right-hand side of Eq. �11�, b1 and b2 are considered
as independent parameters. Notice that the term including

q��� reduces the contribution of this force, which leads to the
acceleration of the intrusion �see Eq. �14��. This is qualita-
tively consistent with the experimental observation.

The second force is a gravitational force and a force due
to the pressure gradient, which is denoted as F2. We have
derived F2 using Eqs. �5� and �6� as

F2 = ��Lgh − �Hg�x − d�
d

− �Lg��1 − e−�/��

= �−
��H + �LR�g�x − xde�

d
+ 	�g��1 − e−�/�� , �12�

where the terms �Lgh and �Hg�x−d� are the pressures at the
lower and upper ends of a pipe derived from the heights of
the fluid surfaces, respectively. The term �1−e−�/�� is intro-
duced to continuously connect F2=0 for �=0 and F2=−��H
+�LR�g�x−xde� /d+	�g for �a, with � characterizing the
spatial range where F2 takes a value between these two.

The third force is related to the effect of the acceleration
of the fluid outside the pipe, which is denoted as F3. F3 is
derived by considering the sudden contraction of the flow
outside the end of the pipe that causes an intrusion of the
light fluid, and hence, it is phenomenologically described by
multiplying the factors e−�/� and ẋ−1, where � characterizes
the spatial range where this force works effectively. Thus, F3
is derived using Eq. �10� as

F3 = ke−�/�ẋ−1 
8kd�H

ga2��H + �LR��x − xde�
e−�/�. �13�

Here, we have neglected the term including q��� because this
force is considered to work effectively only when ��d is
satisfied.

From Eqs. �11�–�13�, the equation of motion for a unit
volume element located at the tip of the intrusion is given as

�L�̈ = −
�H + �L

2
�b1�1 − � �

d
�n� ��H + �LR�ga2

8d�H
�x − xde�

+ b2�̇� + �−
��H + �LR�g�x − xde�

d
+ 	�g��1 − e−�/��

+
8kd�H

ga2��H + �LR��x − xde�
e−�/�. �14�

Note that � remains zero in an exceptional case where F1
+F2+F3
0 at �=0. Thus, Eqs. �10� and �14� describe the
behavior of the down flow.

The behavior of the up flow is modeled in the similar
manner as the down flow. Considering the densities of the
fluid flowing upward and the intrusion fluid in this case are
�L and �H, respectively; it is straightforward to obtain the
temporal evolutions of x and � as

ẋ = − �1 − q����
��H + �LR�ga4�

8Sd�L
�x − xue� , �15�

�H�̈ = F1 + F2 + F3, �16�

where

(a) (b) (c)

(d)

FIG. 2. �Color online� Microscopic images of the intrusion
in the time course of down flow ��a�→ �b�→ �c�→ �d��. An intru-
sion of the light fluid is clearly observed �indicated by arrows�.
Glucose solution and water are used as the heavy and light fluids,
respectively. The parameter values employed in this experiment are
as follows: a=0.365 mm, d=50 mm, R=0.337, �H=1.064
�103 kg m−3, �L=0.997�103 kg m−3, �H=1.42�10−3 Pa s, and
�L=0.89�10−3 Pa s.
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xue = xde +
	�d

�H + �LR
, �17�

q��� = � �

d
�n

, �18�

F1 =
�H + �L

2
�b1�1 − q����

��H + �LR�ga2

8d�L
�x − xue� + b2�̇� ,

�19�

F2 =
��H + �LR�g�x − xde�

d
�1 − e−�/�� , �20�

F3 = −
8kd�L

ga2��H + �LR��x − xue�
e−�/�. �21�

Here, we have considered the downward direction as positive
when we define �, F1, F2, and F3, with the origin of � sets at
the upper end of the pipe. Note that � remains zero in an
exceptional case where F1+F2+F3
0 at �=0. In this man-
ner, Eqs. �15�–�21� describe the behavior of the up flow.

Thus, the behaviors of the down and up flows are de-
scribed by using two variables, x and �. These equations are
simplified in a nondimensional form as follows. The down
flow is described as

�−1dx̂

dt̂
= −

x̂

�̂H

�1 − ���̂�n� , �22�

�
d�̂

dt̂
= max�0,− C1

x̂

�̂H

�1 − ���̂�n� + C2
1 − x̂

�̂I

�1 − e−�̂/���

+ C3
�̂H

�̂I

e−�̂/��

x̂
� −

C4

�̂I

d2�̂

dt̂2
, �23�

while the up flow is described as

�−1dx̂

dt̂
=

1 − x̂

�̂L

�1 − ���̂�n� , �24�

�
d�̂

dt̂
= max�0,− C1

1 − x̂

�̂L

�1 − ���̂�n� + C2
x̂

�̂I

�1 − e−�̂/���

+ C3
�̂L

�̂I

e−�̂/��

1 − x̂
� −

C4

�̂ID

d2�̂

dt̂2
, �25�

where �=a /d�1, �̂=� /a, t̂=�Hga4� / �8S�Wd�t, �̂H=�H /
�W, �̂L=�L /�W, �̂I=�I /�W= ��H+�L� / �2�W�, ��=� /a,
��=� /a, D=�L /�H, �=1+DR, C1=b1	�S / �b2�Ha2��, C2
=8S	� / �b2�Ha4��, C3=64kS�W / �b2	�g2�Ha6��, and C4
=a5�L�H�g / �8b2S�W

2 d2�. Here, �W is the viscosity of water
at 25.0 °C, 0.89�10−3 Pa s. x̂ is defined as x̂= �x
−xde� / �xue−xde�, and hence, x̂=0 and 1 correspond to the
hydrostatic equilibria where a pipe is filled with the heavy
and light fluids, respectively. max�0, . . .� is introduced so that
the exceptions described above are included in the equations.

Here, we can neglect the last terms in the right-hand sides
of Eqs. �23� and �25� under the following consideration: the
ratio of C4 to C2 is given as

C4

C2
=

a9�2�H
2 �Lg

64S2	��W
2 d2 =

3

8
���1/2�2��−2� �L

�WD
�2

. �26�

Here, ��1/2�1 and ��1 are satisfied in the present assump-
tion and ��3 /2 should be satisfied so that an oscillation
occurs �see details in �10��. Moreover, �L / ��WD� is usually
not much larger than unity. Hence, C4 /C2�1 is satisfied, and
thus, the contributions of the last terms in the right-hand
sides of Eqs. �23� and �25� are considered to be negligible as
compared to the term max�0, . . .�.

Finally, we will combine the equations for the down and
up flows so that the entire oscillatory behavior can be de-
scribed in a unified manner. For this purpose, we have ob-
served how the processes of the down and up flows are con-
nected and have found that it proceeds in the following way:
as the intrusion grows, the flow becomes gradually ob-
structed which leads to the termination of the flow. After
then, the intrusion reaches the end of the pipe and the oppo-
site flow begins. Although this opposite flow is weak at first,
it becomes firm gradually, and then the flow reversal is com-
pleted. Here, the interval between the time when the flow
terminates and the time when the flow reversal is completed
is generally less than �2% of the oscillation period. Thus,
the switching of the down and up flows occurs in a suffi-
ciently short time compared with the time scale of oscilla-
tion.

Based on this observation, we assume in the theory that
the flow switches discontinuously when the intrusion reaches
the end of the pipe. Thus, by introducing a discontinuous
variable � that takes a value of 1 or 0 during the up or down
flows, respectively, Eqs. �22�–�25� are combined into the fol-
lowing equations:

�−1dx̂

dt̂
= �1 − ���̂�n�

� − x̂

�̂H − 	�̂�
, �27�

�
d�̂

dt̂
= max�0,�1 − 2���C1

�1 − ���̂�n��� − x̂�
�̂H − 	�̂�

+ C2
1 − � − x̂

�̂I

�1 − e−�̂/��� − C3
�̂H − 	�̂�

�̂I

e−�̂/��

� − x̂
��

− �−1	��̂ − �−1� , �28�

d�

dt̂
= �1 − 2��	��̂ − �−1� , �29�

where 	�̂=�Ĥ−�L̂. Note that � changes its value and �̂ is
reset to zero when the intrusion reaches the end of the pipe,
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that is, �̂=�−1. Thus, Eqs. �27�–�29� are the fundamental
equations describing the overall behavior of density oscilla-
tion.

III. COMPARISON WITH THE EXPERIMENTS

We will compare the oscillatory curves simulated using
the above model with those obtained in the experiments. The
detailed experimental setup and procedure have already been

described in �21�. In the simulation, the Runge-Kutta method
is used with a time step of 0.0001. The parameters �� and ��
are chosen such that the intrusion length where its rapid
growth begins is well reproduced �see Fig. 10 in �21��, while
b1, b2, and k are chosen such that the viscosity-dependent
flow-reversal process is well reproduced �see Fig. 8 in �21��.
The parameter n is set at 2 to properly characterize the extent
of the obstruction of flow �see Fig. 4�. These parameter val-
ues do not depend on the simulation conditions described
below.

First, we show the case where the viscosities of the two
fluids do not differ much from each other. Figure 3 shows the
experimental and simulated results for the temporal evolu-
tion of the heavy fluid surface. It is found in both the experi-
ment and simulation that the fluid surface oscillates regu-
larly. Each up and down flow observed in the experiment is
well fitted by an exponential function, whose time constant
and asymptotic value in the simulation are surprisingly in
good agreement with the experiment. Moreover, the simula-
tion also reproduces the timing of the flow reversal quite
well. Thus, the overall wave form of the oscillation in the
simulation is almost consistent with that in the experiment
under the given parameter values. It is noted that although
the average height observed in the experiment exhibits a
gradual increase owing to the decrease in the density of the
heavy fluid, it is not found in the simulation because the
density is assumed to be kept constant.

Figure 4 shows the magnified views of Fig. 3 at the flow
reversals from down to up and up to down flows, where the
temporal evolution of the intrusion length is also shown.
First, we observe the flow-reversal process from down to up
flow in the experiment �Fig. 4�a��. It is found that the intru-
sion of the light fluid begins long before the flow reversal
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FIG. 3. Temporal evolution of the height of the heavy fluid
surface. Experimental and simulated results are shown as solid and
dashed lines, respectively. Each branch for the up and down flows is
well fitted by an exponential function both in the experiment and
the simulation �dotted line�. The parameter values employed in
the experiment and simulation are as follows: a=0.365 mm,
d=70 mm, R=1.44�10−2, �H=1.059�103 kg m−3, �L=0.997
�103 kg m−3, �H=2.64�10−3 Pa s, �L=1.98�10−3 Pa s, b1

=8.03�107 m−2, b2=1.20�109 m−2, k=0.41 kg m−1 s−3, ��
=1.82, ��=0.30, C1=7.21, C2=5.39, and C3=0.32.
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FIG. 4. �Color online� Temporal evolutions of the height of the heavy fluid surface �black solid line� and the intrusion length �red �gray�
dashed line� at the flow reversal: �a� experimental and �b� simulated results for the down to up flow and �c� experimental and �d� simulated
results for the up to down flow. Each branch for the up and down flows of the heavy fluid surface deviates from an exponential function
�dotted line� before the flow reversal. The parameter values employed in the experiment and simulation are as follows: a=0.365 mm,
d=70 mm, R=1.44�10−2, �H=1.059�103 kg m−3, �L=0.997�103 kg m−3, �H=2.64�10−3 Pa s, �L=1.98�10−3 Pa s, b1=8.03
�107 m−2, b2=1.20�109 m−2, k=0.41 kg m−1 s−3, ��=1.82, ��=0.30, n=2, C1=7.21, C2=5.39, and C3=0.32.
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and grows rather slowly. When the intrusion length becomes
�1 mm, the intrusion begins to grow rapidly and accelerates
gradually as the intrusion length increases. Then, the oscilla-
tory curve of the fluid surface begins to deviate from the
exponential function. Finally, when the intrusion reaches the
upper end of the pipe, the flow reverses completely within
�20 s. The flow reversal from the up to down flow proceeds
in a manner similar to the reversal from the down to up flow.

These tendencies are generally well reproduced by the
simulation. The intrusion length � increases slowly at first
and then begins to increase rapidly when � becomes
�1 mm. The deviation of the oscillatory curve of the fluid
surface from the exponential function occurs during the rapid
growth of the intrusion. The switching between the down and
up flows occurs at �=d, which well characterizes the experi-
mental result that the flow reverses immediately after the
intrusion reaches the end of the pipe. However, the time
required for the rapid growth of the intrusion is somewhat
longer in the simulation than in the experiment.

Next, we show the case where the viscosities of the fluids
are varied. Figures 5�a�–5�c� show the experimental result
when �H��L. The time constant of an exponential curve for

the up flow is significantly greater than that when �L is
small. In the flow reversal from the up to down flow, the flow
reverses for a relatively low fluid surface. On the other hand,
in the flow reversal from the down to up flow, the flow re-
versal does not occur until the fluid surface approaches the
hydrostatic equilibrium. Figures 5�d�–5�f� show the simu-
lated result. It is found that the general trend observed in the
experiments is well reproduced. In the simulation, however,
the time required for the rapid growth at the flow reversal
from the down to up flow is longer than that in the experi-
ment, which makes the height of the fluid surface at the flow
reversal slightly closer to the hydrostatic equilibrium.

Figures 6�a�–6�c� show the experimental result when �H
�L. A trend opposite to that when �H��L is found to
occur. The time constant of the exponential curve for the
down flow is significantly greater than that when �H is small,
and the flow reversal from the down to up flow occurs when
the fluid surface is still higher while that from the up to down
flow does not occur until the fluid surface approaches the
hydrostatic equilibrium. Figures 6�d�–6�f� show the simu-
lated result. Although the simulated flow reversal from the
up to down flow occurs when the fluid surface is slightly
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FIG. 5. �Color online� Temporal evolution of the height of the heavy fluid surface �black solid line� and the intrusion length �red �gray�
dashed line� when �H��L: �a�–�c� experiment and �d�–�f� simulation. �b� and �e� Magnified views at the flow reversal from down to up
flow. �c� and �f� Magnified views at the flow reversal from up to down flow. Each branch for the up and down flows of the heavy fluid surface
is well fitted by an exponential function �dotted line�. The parameter values employed in the experiment and the simulation are as follows:
a=0.365 mm, d=70 mm, R=1.44�10−2, �H=1.058�103 kg m−3, �L=0.996�103 kg m−3, �H=2.66�10−3 Pa s, �L=14.18
�10−3 Pa s, b1=8.03�107 m−2, b2=1.20�109 m−2, k=0.41 kg m−1 s−3, ��=1.82, ��=0.30, n=2, C1=7.21, C2=5.39, and C3=0.32.
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closer to the hydrostatic equilibrium, the general trend found
in the experiment is well reproduced.

The case where the pipe length is shortened is also inves-
tigated to elucidate the applicability of the present model.
Figures 7�a�–7�c� show the experimental result when a short
pipe �d=10 mm� is used. Obviously, the wave form of the
oscillation in the fluid surface is still characterized by expo-
nential functions. The amplitude of the oscillation and the
time constants of the exponential functions for each up and
down flow are found to be much smaller than that in the case
of a long pipe. On the other hand, the intrusion grows slowly
at first and begins to grow rapidly at an intrusion length of
�1 mm, which leads to the deviation from the exponential
response in the fluid surface. This is essentially the same as
that for a long pipe. Figures 7�d�–7�f� show the simulated
result. We find that the general trend found in the experiment
is well reproduced. However, the time required for the rapid
growth of an intrusion in the flow reversal is somewhat
lesser than that in the experiment. In addition, the time con-
stants of the exponential functions for both up and down
flows are relatively greater than those in the experiment,
which is thought to be due to the slight deviation from an
ideal Hagen-Poiseuille flow �23�.

IV. INTERPRETATIONS OF THEORETICAL MODEL

Thus, it is found that the overall behavior of a density
oscillator is excellently expressed by the above model. From
the model, the mechanism of the density oscillation is physi-
cally understandable through the following considerations.

First, we consider a case of the down flow ��=0�. Let f1��̂�,
f2��̂�, and f3��̂� be defined as f1��̂�=−C1x̂�1− ���̂�n� / �̂H,

f2��̂�=C2�1− x̂��1−e−�̂/��� / �̂I, and f3��̂�=C3�̂He−�̂/�� / ��̂Ix̂�,
and we use f��̂�� f1��̂�+ f2��̂�+ f3��̂�. Note that f1��̂�, f2��̂�,
and f3��̂� originate from the forces F1, F2, and F3, respec-
tively, and that x̂ should be regarded as a parameter charac-
terizing their functional forms because it is a slowly varying

variable as compared to �̂ with respect to time. Then, Eq.
�28� is simply rewritten as

�
d�̂

dt̂
= max�0, f��̂�� − �−1	��̂ − �−1� . �30�

Figure 8 shows the x̂ dependence of f1��̂�, f2��̂�, f3��̂�, and

f��̂� when �̂H= �̂L, �̂H��̂L, and �̂H
�̂L. Now, consider the
case when �̂H= �̂L �Figs. 8�a�–8�c��. When the value of x̂ is
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FIG. 6. �Color online� Temporal evolution of the height of the heavy fluid surface �black solid line� and the intrusion length �red �gray�
dashed line� when �H�L: �a�–�c� experiment and �d�–�f� simulation. �b� and �e� Magnified views at the flow reversal from down to up
flow. �c� and �f� Magnified views at the flow reversal from up to down flow. Each branch for the up and down flows of the heavy fluid surface
is well fitted by an exponential function �dotted line�. The parameter values employed in the experiment and the simulation are as follows:
a=0.365 mm, d=70 mm, R=1.44�10−2, �H=1.057�103 kg m−3, �L=0.997�103 kg m−3, �H=8.59�10−3 Pa s, �L=0.89�10−3 Pa s,
b1=8.03�107 m−2, b2=1.20�109 m−2, k=0.38 kg m−1 s−3, ��=1.82, ��=0.30, n=2, C1=6.99, C2=5.23, and C3=0.31.
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large, the intrusion does not occur and �̂ remains zero be-
cause the relation f�0��0 should hold owing to the large

contribution of f1��̂� �Fig. 8�a��. However, as the value of x̂ is
decreased, f�0� becomes positive because the contribution of

f3��̂� becomes large and also because the contribution of

f1��̂� decreases while that of f2��̂� increases. Then, the rela-

tion f��̂�=0 leads to a positive solution �̂0 with f���̂0�
0.

Hence, the condition �̂= �̂0 gives a stable solution of Eq. �30�
�Fig. 8�b��. Thus, the light fluid begins to intrude into a pipe.

As x̂ is further decreased, �̂0 increases gradually. When the

contribution of the sum of f2��̂� and f3��̂� becomes greater

than that of f1��̂�, the solution �̂0 disappears so that f��̂�
becomes positive for 0��̂
�−1 �Fig. 8�c��. Thus, the intru-

sion accelerates suddenly. Finally, �̂ is reset to zero when �̂
becomes �−1, and then the flow reverses completely.

As one may find from the above argument, the properties

that f2��̂� and f3��̂� are the increasing and decreasing func-

tions of �̂, respectively, are the essential points of the present
model because the slow growth of the intrusion cannot be
explained without them. By considering the derivation of F2

and F3, we find that the increasing property of f2��̂� is origi-
nated from the fact that the pressure gradient is continuously
connected between inside and outside the pipe, while the

decreasing property of f3��̂� comes from the fact that the
effect of the acceleration of the fluid outside the pipe works
only in the vicinity of the end of the pipe.

When the viscosities of the fluids are varied, the func-

tional forms of f1��̂�, f2��̂�, and f3��̂� change significantly.

When �̂H��̂L �Figs. 8�d�–8�f��, f��̂� becomes relatively

large especially for small �̂, which is due to the relatively

large contribution of f3��̂�. Thus, the intrusion and hence the
onset of its rapid growth occur even when x̂ is still large. On

the other hand, when �̂H
�̂L �Figs. 8�g� and 8�h��, f��̂�
becomes generally small because of the relatively large con-

tribution of f1��̂�. Hence, the intrusion and the onset of its
rapid growth do not occur until x̂ becomes sufficiently small.
Such viscosity dependence is physically originated from the
facts that the viscosity of the fluid at the interface �̂I depends
both on the viscosities of the heavy and light fluids while the
velocity of down �up� flow depends solely on the viscosity of
the heavy �light� fluid and that the effect of the acceleration
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FIG. 7. �Color online� Temporal evolution of the height of the heavy fluid surface �black solid line� and the intrusion length �red �gray�
dashed line� in the case of a short pipe: �a�–�c� experiment and �d�–�f� simulation. �b� and �e� Magnified views at the flow reversal from down
to up flow. �c� and �f� Magnified views at the flow reversal from up to down flow. Each branch for the up and down flows of the heavy fluid
surface is well fitted by an exponential function �dotted line�. The parameter values employed in the experiment and the simulation are as
follows: a=0.365 mm, d=10 mm, R=1.44�10−2, �H=1.057�103 kg m−3, �L=0.996�103 kg m−3, �H=1.79�10−3 Pa s, and �L

=0.89�10−3 Pa s, b1=8.03�107 m−2, b2=1.20�109 m−2, k=0.40 kg m−1 s−3, ��=1.82, ��=0.30, n=2, C1=7.10, C2=5.31, and C3

=0.32.
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of the flow that has passed through the pipe �F3� is related to
the velocity of the flow.

Next, let us consider the case of an up flow ��=1�. Even
in this case, Eq. �28� is still described by Eq. �30� if we

replace x̂ and �H in f1��̂�, f2��̂�, and f3��̂� with 1− x̂ and �L,
respectively. Hence, the process of the flow reversal from the
up to down flow can also be explained from Fig. 8 in a
manner similar to that of the flow reversal from the down to
up flow.

The pipe length is only related to the parameter �. Thus,

the relative contributions of f1��̂�, f2��̂�, and f3��̂� are not
affected by the pipe length. Moreover, the nondimensional-
ized time required for the rapid growth of the intrusion is not

affected by the pipe length in the model because d�̂ /dt̂ is
proportional to �−1 during the rapid growth whereas the flow

reverses at �̂=�−1. Thus, we find from the model that the pipe
length does not essentially affect the flow-reversal process.

V. EXTENSION TO COUPLED OSCILLATORS

The model derived in Sec. II can be easily extended
to describe the behavior of coupled density oscillators in
which several inner containers are held within one outer con-
tainer. It is well known in such systems that the dynamical
behaviors of the fluid surfaces in the inner containers are

affected by each other through the height of the light fluid
surface h, which leads to various types of synchronization
�11–13,15,17,18�. For instance, antiphase synchronization of
two inner containers will occur because the down flow in one
of the inner containers elevates the light fluid surface and
increases the hydropressure in the outer container, which
makes the flow in the other container upward and vice versa.

Now we consider a case where N inner containers are held
within one outer container. We assume that the densities of
the heavy fluids, the diameters of the pipes, and the surface
areas of the fluid surfaces in the inner containers are all iden-
tical. Then, h is described as

h − hde = − �
j=1

N

R�xj − xde�, j = 1,2, . . . ,N , �31�

where xj is the height of the heavy fluid surface of the jth
inner container and R is here defined as the ratio of the
surface area of one of the inner containers to that of the outer
container. By using Eq. �31� instead of Eq. �5�, it is straight-
forward to derive the model of coupled oscillators as fol-
lows:

dx̃i

dt̂
= �1 − q̂����

�id̂i − x̃i − DR�
j=1

N

x̃j

��̂Hi − 	�̂i��id̂i

, �32�
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FIG. 8. Functional forms of f1��̂� �dashed line�, f2��̂� �dotted line�, f3��̂� �solid line�, and f��̂� �bold line� in the cases of �a�–�c� �̂H

=2.00 and �̂L=2.00, �d�–�f� �̂H=10.00 and �̂L=2.00, and �g�–�i� �̂H=2.00 and �̂L=10.00. x̂ is set as �a�, �d�, and �g� x̂=0.45, �b�, �e�, and

�h� x̂=0.27, and �c�, �f�, and �i� x̂=0.20. The stable solution of Eq. �30�, �̂= �̂0, is indicated by an empty circle. The values of the parameters
in the simulation are as follows: a=0.365 mm, d=70 mm, �H=1.057�103 kg m−3, �L=0.996�103 kg m−3, R=1.44�10−2, b1=8.03
�107 m−2, b2=1.20�109 m−2, k=0.40 kg m−1 s−3, �=5.21�10−3, ��=1.82, ��=0.30, n=2, C1=7.10, C2=5.31, and C3=0.32.
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�

d̂i

d�̂i

dt̂
= max�0,�1 − 2�i��C1

�1 − q̂������id̂i − x̃i − DR�
j=1

N

x̃j�

��̂Hi − 	�̂i�i�d̂i

+ C2

�1 − �i�d̂i − x̃i − DR�
j=1

N

x̃j

�̂Iid̂i

�1 − e−�̂i/���

− C3
�̂Hi − 	�̂i�i

�̂Ii

d̂ie
−�̂i/��

�d̂i − x̃i − DR�
j=1

N

x̃j
�� −

d̂i

�
	� �̂i −

d̂i

� � , �33�

d�i

dt̂
= �1 − 2�i�	��̂i −

d̂i

�
� , �34�

q̂��i� = � ��̂i

d̂i

�n

, �35�

where �̂i and �i are the nondimensionalized intrusion length
and the parameter expressing the direction of flow of the ith
oscillator, respectively. �̂Hi is the nondimensionalized vis-
cosity of the heavy fluid in the ith container and �̂Ii= ��̂Hi

+ �̂L� /2. d̂i�di /d0 is the nondimensionalized pipe length,
where d0 is the characteristic length of a pipe. The nondi-
mensionalized height of the heavy fluid surface x̃i is defined
as x̃i= �xi−xde��H /	�d0 and � is defined as �=a /d0.

The results obtained from the simulations of Eqs.
�32�–�34� are shown in Figs. 9–11. The time step employed
here is set at 0.001. Figures 9�a� and 9�b� show the cases of
N=2 and 3, where the properties of the pipes and the fluids
in the inner containers are assumed to be identical. It is clear
that the dynamics of the fluid surfaces in the inner containers
are synchronized in antiphase �the phase differences of ��
and ��2 /3��, respectively�. The similar results are fre-
quently reported so far in the experiments �11,12,15,17,18�.

Figure 10 shows the case of N=2, where the pipe lengths
and the viscosities of the fluids in the inner containers are not
identical. We find in Fig. 10�a� that synchronization by the
ratio in the period of 1:3 occurs. On the other hand, when
�̂H2 is slightly varied, the 1:3 synchronization disappears and
the phase relationship between the two oscillators becomes
rather complex �Fig. 10�b��. Figure 11 shows the period ratio
of the two inner containers when �̂H2 is varied with R set at
0.1 and 0.3. It is clear that the period ratio increases as �̂H2
increases, and it tends to be entrained into the simple ratio of
integers such as 3:2, 1:1, 2:3, 1:2, 2:5, and 1:3. For large R,
the region where the entrainment occurs becomes large and
the plots of the period ratio become rather stepwise �Fig.
11�b��. Such stepwise character is similar to a phenomenon
called “devil’s staircases” �8�. These results do not contradict
with the previously reported experimental findings that the
period ratio is entrained into the ratio of the nearest natural

numbers �13� and that the ratio of the areas of the heavy and
light fluid surfaces characterizes the coupling strength �15�.

Thus, Eqs. �32�–�34� well describe the dynamical behav-
ior of coupled density oscillators. In contrast to the model
reported previously �11–13�, the present model adequately
reflects the dependence of experimental conditions such as
the properties of the fluids and the geometries of the contain-
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FIG. 9. Simulated results of �a� two and �b� three coupled oscil-
lators when the pipe lengths and the viscosities of the heavy fluids
are identical. The temporal evolution of x̃i for each oscillator is
shown. The first, second, and third oscillators are indicated by solid,
dashed, and dotted lines, respectively. The initial condition is

set at x̃1=1, x̃2=0.8, x̃3=0.6, �̂1= �̂2= �̂3=0, and �1=�2=�3=0. The
parameters employed in the simulation are as follows: a
=0.365 mm, d0=70 mm, d1=d2=d3=70 mm, �H=1.057
�103 kg m−3, �L=0.996�103 kg m−3, �H1=�H2=�H3=2.00
�10−3 Pa s, �L=2.50�10−3 Pa s, R=0.1, b1=8.03�107 m−2,
b2=1.20�109 m−2, k=0.40 kg m−1 s−3, �=5.21�10−3, ��=1.82,
��=0.30, n=2, C1=7.10, C2=5.31, and C3=0.32.
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ers and pipes. Hence, it will lead us to properly understand
the dynamics of coupled density oscillators in more general
cases.

VI. DISCUSSION

We have derived a model of a density oscillator that de-
scribes the entire oscillatory dynamics in a unified manner.
Although a phenomenological model had been reported pre-
viously �11–13�, it did not contain explicit experimental pa-
rameters and it could not be used to characterize the actual
behavior of oscillations because the flow-reversal process
was not taken into account. On the contrary, in the present
model, all the processes including the up and down flows and
the flow-reversal process are treated in a unified way, and
their viscosity dependence as well as the pipe-length depen-
dence is generally well reproduced. Thus, the present model
will become a general description of density oscillators.

The flow-reversal process is particularly important in a
density oscillator, and it is well characterized by three forces
acting on the volume element at the tip of the intrusion, F1,
F2, and F3. Actually, the slow growth of an intrusion fol-
lowed by its rapid growth is well reproduced by considering
these three forces. These forces are actually characterized by

several parameters, among which �� and �� are particularly
important, because they characterize the length scales where

f2��̂� increases and f3��̂� decreases, respectively, and hence
they altogether determine the intrusion length when its rapid
growth begins. These two parameters seem to have universal
characteristics. In fact, our experimental observation that the
onset of the rapid growth occurs at ��1 mm even when the
viscosities and pipe length are varied is well reproduced by
taking �� and �� as constant. Moreover, the fact that the
values of �� and �� are both O�1� is physically plausible
because � and � should be the order of the pipe radius,
which is expected from their physical meanings.

The function q��� and the discontinuous variable �, which
are introduced in the present study, are also essential for
describing the connection between the up and down flows.
Our experimental findings that the fluid surface gradually
deviates from the exponential function as the intrusion grows
and that the flow reversal is completed almost instanta-
neously after the intrusion reaches the end of the pipe are
well reproduced by introducing q��� and �, respectively.

We have also extended the model to describe the behav-
iors of coupled density oscillators and have shown that the
behaviors observed in the previous experiments, such as an-
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FIG. 10. Simulated results of two coupled oscillators when the
pipe lengths and the viscosities of the heavy fluids are not identical.
The temporal evolution of x̃i for each oscillator is shown. The first
and second oscillators are indicated by solid and dashed lines, re-

spectively. The initial condition is set at x̃1=1, x̃2=0.8, �̂1= �̂2=0,
and �1=�2=0. �H2 is set at �a� 15.00�10−3 Pa s and �b� 14.00
�10−3 Pa s. Other parameters employed in the simulation are as
follows: a=0.365 mm, d0=70 mm, d1=70 mm, d2=50 mm,
�H=1.057�103 kg m−3, �L=0.996�103 kg m−3, �H1=2.00
�10−3 Pa s, �L=2.50�10−3 Pa s, R=0.1, b1=8.03�107 m−2,
b2=1.20�109 m−2, k=0.40 kg m−1 s−3, �=5.21�10−3, ��=1.82,
��=0.30, n=2, C1=7.10, C2=5.31, and C3=0.32.
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FIG. 11. Simulated result for period ratio in two coupled oscil-
lators. The ratio of the period of the second to first oscillators is
plotted against �̂H2, where �̂H1 is kept constant. �a� R=0.1 and �b�
R=0.3. Solid lines indicate the period ratios of 2/3, 1/1, 3/2, 2/1,
5/2, and 3/1 from bottom to top. The parameters employed in the
simulation are as follows: a=0.365 mm, d0=70 mm, d1=70 mm,
d2=50 mm, �H=1.057�103 kg m−3, �L=0.996�103 kg m−3,
�H1=2.00�10−3 Pa s, �L=2.50�10−3 Pa s, b1=8.03�107 m−2,
b2=1.20�109 m−2, k=0.40 kg m−1 s−3, �=5.21�10−3, ��=1.82,
��=0.30, n=2, C1=7.10, C2=5.31, and C3=0.32.
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tiphase synchronization and synchronization by the ratio of
integers �11–13,15,17,18�, are actually reproduced by the
simulations of the model. In contrast to the model reported
previously �11–13�, this model describes how the behavior
changes depending on the viscosities and the pipe lengths.
Moreover, it also describes the dependence of the ratio of the
surface areas of the heavy fluid to that of the light fluids,
which characterizes the coupling strength. Although we have
considered here the case where the surface areas are identical
among the inner containers, this model will be easily ex-
tended to the case where they are not identical, that is, the
coupling is asymmetric.

We have noticed, however, that the present model does
not reproduce the growth rate of the intrusion during the
rapid growth. In fact, the time required for the rapid growth
at the flow reversal from the down to up flow in the simula-
tion is generally longer than that in the experiment �see Figs.
4�a�, 4�b�, 5�b�, 5�e�, 7�b�, and 7�e��. This is probably be-
cause the acceleration of the intrusion at the rapid growth in
actual systems is more significant than that in the model.
Moreover, the width of an intrusion within the pipe may also
be related to the growth rate because it is smaller when �H
��L than when �H�L, as we have shown in our previous
study �see Fig. 12 in �21��.

The present model also has a problem that the number of
the parameters is large. Indeed, there are six parameters b1,
b2, k, n, �, and � to be specified experimentally. Moreover,

their physical meanings are still unclear except � and �.
Thus, it is clearly needed to reduce the number of the param-
eters in the model through further investigation. Neverthe-
less, since these parameters have universal characters at least
with regard to the viscosity and the pipe length, the present
model is much more useful than the previously accepted
model �11–13� which contains fully unknown parameters.

Although we have considered the effect of the viscosities
of the fluids and the pipe length in the present study, other
factors such as the densities of the fluids, pipe diameter, and
interfacial tension between the fluid and pipe may also affect
the behavior of a density oscillator. In addition, the present
model is applicable in the limited case where da and
��1/2�1 are satisfied. Hence, further generalization of the
model is clearly required in the future.

Finally, the importance of the present model should be
noted in that it will provide a universal principle for relax-
ation oscillators that exhibit a repetitive change of slow and
fast processes. In other words, it is considered that the three
factors corresponding to F1, F2, and F3 are essential for the
onset of the fast process in a relaxation oscillator: the factor
corresponding to F3 “triggers” the change from the slow to
the fast process and that corresponding to F2 promotes the
onset of the fast process when it overwhelms that corre-
sponding to F1. We expect that this finding will provide an
essential breakthrough in the study of relaxation oscillations.
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